TMAC: Timestamp-Ordered MAC Protocol for Wireless Mesh Networks

  • Faisal Nawab

Student thesis: Master's Thesis

Abstract

Wireless Mesh Networks (WMNs) have emerged to meet a need for a self-organized and self-configured multi-hop wireless network infrastructure. Low cost infrastructure and ease of deployment have made WMNs an attractive technology for last mile access. However, 802.11 based WMNs are subject to serious fairness issues. With backlogged TCP traffic, nodes which are two or more hops away from the gateway are subject to starvation, while the one-hop away node saturates the channel with its own local traffic. We study the interactions of TCP and IEEE 802.11 MAC in WMNs to aid us in understanding and overcoming the unfairness problem. We propose a Markov chain to capture the behavior of TCP sessions, particularly the impact on network throughput performance due to the effect of queue utilization and packet relaying. A closed form solution is derived to numerically derive the throughput. Based on the developed model, we propose a distributed MAC protocol called Timestamp-ordered MAC (TMAC), aiming to alleviate the unfairness problem in WMNs via a manipulative per-node scheduling mechanism which takes advantage of the age of each packet as a priority metric. Simulation is conducted to validate our model and to illustrate the fairness characteristics of TMAC. Our results show that TMAC achieves excellent resource allocation fairness while maintaining above 90% of maximum link capacity in parking lot and large grid topologies. Our work illuminates the factors affecting TCP fairness in WMNs. Our theoretical and empirical findings can be used in future research to develop more fairness-aware protocols for WMNs.
Date of AwardMay 2011
Original languageEnglish (US)
Awarding Institution
  • Computer, Electrical and Mathematical Science and Engineering
SupervisorBasem Shihada (Supervisor)

Cite this

'