Titanium Neopentyl supported on KCC-1 and Al-modified KCC-1 and its Catalytic Application for Ethylene polymerization

  • Lujain M. Alrais

Student thesis: Master's Thesis

Abstract

A new generation of Titanium based catalysts for ethylene polymerization has been developed through the Surface Organometallic Chemistry (SOMC) methodology using a novel type of silica support having a 3D fibrous morphology, KCC-1. The first type of Tibased catalyst was obtained by reacting isolated silanol surface groups, ≡SiOH of KCC-1 (dehydroxylated at 700 ⁰C under high vacuum, 10-5 bar) with titanium (IV) tetraneopentyl, Ti(CH2tBu)4 to produce [(≡SiO)Ti(CH2tBu)3]. The second type of Ti-based catalyst was generated by using an Al-modified KCC-1. The peculiarity of this support is due to the presence of tetra-coordinated aluminum-bound hydroxyl group, [(≡Si-O-Si≡)(≡SiO)2Al- OH] that can be used as a Lewis Acid anchor sites and generate new catalytic properties. The well-defined [(≡Si-O-Si≡)(≡SiO)2Al-OH] was obtained by reacting diisopropylaluminum hydride with KCC treated at 700 °C followed by a thermal treatment at 400 °C and oxidation with N2O. IR spectra of pyridine adsorbed on the Al sites show that these were strong Lewis acid sites (constituting 80% of the total Al sites). Thus, the highly electrophilic support surface was used to create a single well-defined surface organo-titanium fragment [(≡Si–O–Si≡)(≡Si–O–)2Al–O–Ti(CH2tBu)3] by the reaction of the surface [(≡Si–O–Si≡)(≡Si–O)2Al–OH]) groups with Ti(CH2-tBu)4 at room temperature for 4 h in dry pentane. The performance of each Ti-supported catalyst assessed for ethylene polymerization. It was found that Al-modified support (highly electrophilic) provide better activity compared to the unmodified one. Indeed, the productivity of the catalyst [(≡Si–O– Si≡)(≡Si–O–)2Al–O–Ti(CH2tBu)3] was found to be 67.8 g of PE/ 1mmol Ti/ 1h with molecular weight of 3208408 g/mol; polydispersity was found to be 2.3, and (HDPE) high-density polyethylene was obtained. In contrast, [(≡SiO)Ti(CH2tBu)3] (unmodified one) produces lower molecular weight polymer 989843 g/mol, higher polydispersity (PD) 6.7 and low-density polyethylene (LDPE) productivity was found to be 14.670 g PE/1mmol Ti /1h. These results demonstrate that modification of the oxide ligands on silica through a generation of Al Lewis acid site opens up new catalytic properties, markedly enhancing the catalytic performance of supported organotitanium species. We also demonstrate how the silica mesostructure (2D vs 3D ) affects the catalytic activity in ethylene polymerization. While SBA15 (2D) could limit the accessibility of the active sites resulting in lower yield. In contrast, KCC-1 (3D) are more active in ethylene polymerization, because the active sites reside on the external surface are fully accessible to the substrate.
Date of AwardAug 2018
Original languageEnglish (US)
Awarding Institution
  • Physical Science and Engineering
SupervisorJean-Marie Basset (Supervisor)

Keywords

  • Surface Organmetallic
  • Titanium Catalysts
  • Single Site

Cite this

'