Persistent Aerial Tracking

  • Matthias Mueller

Student thesis: Master's Thesis

Abstract

In this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by 'handing over the camera' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.
Date of AwardApr 13 2016
Original languageEnglish
Awarding Institution
  • Computer, Electrical and Mathematical Science and Engineering
SupervisorBernard Ghanem (Supervisor)

Keywords

  • object tracking
  • Aerial tracking
  • UAV
  • surveillance
  • Benchmark
  • Simulator

Cite this

'