Generation of Orbital Angular Momentum (OAM) Modes with a Spiral Phase Plate Integrated Laser Source

  • Edgars Stegenburgs

Student thesis: Doctoral Thesis

Abstract

The objective of this work is to develop a near-infrared laser device capable of emitting orbital angular momentum (OAM) light. The prototyped device must be suitable for compact, energy-saving optical communication applications. Integrated OAM lasers will revolutionize high-capacity data transmission over any telecommuni- cation network environment, as OAM light can be guided and transmitted through kilometers of optical fibers and propagated in free space and underwater. Several methods for generating OAM light employing various complex monolithic and hybrid integration methods have been demonstrated. In this work, microscale integrated spiral phase plates (SPPs) are chosen to convert the laser beam output into an OAM mode. The concept and design fundamentals of SPPs are discussed, followed by the SPP fabrication process and their implementation in a high-speed communication setup and then integration with a semiconductor laser. SPPs are fabricated by a novel direct laser writing that provides the possibility to rapidly prototype 3D photonic structures via a two-photon polymerization pro- cess. After fabrication, SPPs are used in a fine-tuned free-space optical experimental setup that requires high-precision intercomponent alignment to test the high-speed OAM communication system and analyze the quality of OAM modes, resulting in high-purity OAM signals at data rates up to 1.8 Gbit/s – limited by the avalanche photodetector (APD) frequency response. The fabricated 20-μm-diameter SPPs were the smallest reported in the literature to date for optical characterization. A proof-of-concept monolithic light-emitting array, as a highly integrated OAM laser source, is further proposed for telecommunications and other applications. SPP-integrated 940-nm vertical-cavity surface-emitting laser (VCSEL) array chips that are relatively low-cost, have a small footprint, and are manufacturable in high volumes are developed. SPPs with topological charge modulus values from 1 to 3 are fabricated on the VCSEL arrays, demonstrating OAM modal purities up to ∼65%. The experimentally evaluated data rates in the OAM setup showed consistently sta- ble links up to 2.0 Gbit/s with a bit error ratio of ∼ 1.6 × 10−8 (APD-limited). The challenges of SPP-laser integration are summarized, with the conclusion that the widespread adoption of OAM is limited by the availability of practical integrated solutions for OAM generation and detection.
Date of AwardApr 2021
Original languageEnglish (US)
Awarding Institution
  • Computer, Electrical and Mathematical Science and Engineering
SupervisorBoon Ooi (Supervisor)

Keywords

  • Orbital Angular Momentum
  • Spiral Phase Plate
  • vertical-cavity surface-emitting laser
  • microscale
  • integration
  • VCSEL array

Cite this

'