Energy-Efficient Capacitance-to-Digital Converters for Smart Sensor Applications

  • Abdulaziz Alhoshany

Student thesis: Doctoral Thesis


One of the key requirements in the design of wireless sensor nodes and miniature biomedical devices is energy efficiency. For a sensor node, which is a sensor and readout circuit, to survive on limited energy sources such as a battery or harvested energy, its energy consumption should be minimized. Capacitive sensors are candidates for use in energy-constrained applications, as they do not consume static power and can be used in a wide range of applications to measure different physical, chemical or biological quantities. However, the energy consumption is dominated by the capacitive interface circuit, i.e. the capacitance-to-digital converter (CDC). Several energy-efficient CDC architectures are introduced in this dissertation to meet the demand for high resolution and energy efficiency in smart capacitive sensors. First, we propose an energy-efficient CDC based on a differential successive-approximation data converter. The proposed differential CDC employs an energy-efficient operational transconductance amplifier (OTA) based on an inverter. A wide capacitance range with fine absolute resolution is implemented in the proposed coarse-fine DAC architecture which saves 89% of silicon area. The proposed CDC achieves an energy efficiency figure-of-merit (FOM) of 45.8fJ/step, which is the best reported energy efficiency to date. Second, we propose an energy efficient CDC for high-precision capacitive resolution by using oversampling and noise shaping. The proposed CDC achieves 150 aF absolute resolution and an energy efficiency FOM of 187fJ/conversion-step which outperforms state of the art high-precision differential CDCs. In the third and last part, we propose an in-vitro cancer diagnostic biosensor-CMOS platform for low-power, rapid detection, and low cost. The introduced platform is the first to demonstrate the ability to screen and quantify the spermidine/spermine N1 acetyltransferase (SSAT) enzyme which reveals the presence of early-stage cancer, on the surface of a capacitive biosensor. This platform, which is a biosensor combined with a highly energy-efficient digital CDC, is implemented and fabricated in a CMOS technology and can sense and convert the capacitance value from the biosensor to a digital word in an energy efficient way. The platform achieves an ultra-low power consumption: four orders of magnitude less than the state-of-the-art biosensor-CMOS platforms.
Date of AwardDec 2017
Original languageEnglish
Awarding Institution
  • Computer, Electrical and Mathematical Science and Engineering
SupervisorKhaled Salama (Supervisor)


  • capacitative sensor interface
  • CDC
  • energy-efficient
  • capacitive biosensor
  • figure of merit (FOM)
  • CMOS

Cite this