Energetic Molecules as Future Octane Boosters: Theoretical and Experimental Study

  • Mohannad Al-Khodaier

Student thesis: Doctoral Thesis


The utilization of energetic strained molecules may be one way to mitigate carbon emissions or better and more economical fuel blends. To investigate candidate molecules, limonene and dicyclopentadiene, both theoretical and experimental procedures were implemented here. Computational quantum chemistry methods were employed to determine the thermodynamic properties and kinetic parameters for the hydrogen-abstraction reactions of limonene by a hydrogen atom. Geometry optimization and energy calculation was conducted for all stable species and transition states using Gaussian 09. The rate constants of the H-abstraction reactions were calculated using conventional transition state theory, as implemented in ChemRate software. The obtained values were fitted over the temperature range of 298 – 2000 K to obtain the modified Arrhenius parameters. Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. This study explores blending the anti-knock quality of dicyclopentadiene (DCPD, a by-product of ethylene production from naphtha cracking), with various gasoline fuels. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Ethanol is widely used as a gasoline blending component in many markets, due to current fuel regulations. The test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. Furthermore, the anti-knock properties of dicyclopentadiene (DCPD) as an additive to primary reference fuels (PRF) and toluene primary reference fuels (TPRF) have been investigated. The research octane number (RON) and motor octane number (MON) were measured using cooperative fuels research (CFR) engine for four different fuel blends. Moreover, the ignition delay times of these mixtures were measured in a high-pressure shock tube at 40 bar and stoichiometric mixtures over a temperature range of [700-1200 K]. Ignition delay measurements were also conducted using rapid compression machine (RCM) at stoichiometric conditions and 20 bar. An ignition quality tester (IQT) compared ignition delay times of iso-octane and DCPD. Furthermore, a chemical kinetic auto-ignition model was designed to simulate the IDT experiments.
Date of AwardJun 2018
Original languageEnglish
Awarding Institution
  • Physical Science and Engineering
SupervisorMani Sarathy (Supervisor)

Cite this