Effect of Laminin derived IKVAV Motif and Ultrashort Self- Assembling Peptides on Cell Growth and Organoid Formation of Colorectal Cancer Stem Cells: Bioprintability Assessment

  • Fatimah Jalih

Student thesis: Master's Thesis

Abstract

Over the past decades, many studies have been conducted to generate in vitro tissue systems that help understanding tissue development and disease progression. Hydrogel scaffolds have been frequently used in creating such models. Self-assembling peptide hydrogels are functional in providing the cells a scaffold that supports cell proliferation, however, organoid and lumen formation remains a challenge. Hydrogels can be synthesized and modified based on the essential physiological properties, which can be achieved by altering the chemical composition of the initial material. Thus, in this study, we test the effect of the laminin-derived IKVAV motif on ultrashort self-assembling peptide in relation to cell proliferation and lumen formation in colorectal cancer stem cells. Further, we test the printability of the modified peptide. The modification of ultrashort peptide serves the purpose of providing signals to direct cell adhesion, differentiation, and lumen formation. One particular combination of peptides showed the formation of colorectal organoids containing lumen of outperforming characteristics as compared to the others, also in 3D bioprinting.
Date of AwardNov 2021
Original languageEnglish (US)
Awarding Institution
  • Biological, Environmental Science and Engineering
SupervisorCharlotte Hauser (Supervisor)

Keywords

  • Peptides, 3D bioprinting, IKVAV

Cite this

'