Detection of Cardiovascular Anomalies: An Observer-Based Approach

  • Fernando Ledezma

Student thesis: Master's Thesis

Abstract

In this thesis, a methodology for the detection of anomalies in the cardiovascular system is presented. The cardiovascular system is one of the most fascinating and complex physiological systems. Nowadays, cardiovascular diseases constitute one of the most important causes of mortality in the world. For instance, an estimate of 17.3 million people died in 2008 from cardiovascular diseases. Therefore, many studies have been devoted to modeling the cardiovascular system in order to better understand its behavior and find new reliable diagnosis techniques. The lumped parameter model of the cardiovascular system proposed in [1] is restructured using a hybrid systems approach in order to include a discrete input vector that represents the influence of the mitral and aortic valves in the different phases of the cardiac cycle. Parting from this model, a Taylor expansion around the nominal values of a vector of parameters is conducted. This expansion serves as the foundation for a component fault detection process to detect changes in the physiological parameters of the cardiovascular system which could be associated with cardiovascular anomalies such as atherosclerosis, aneurysm, high blood pressure, etc. An Extended Kalman Filter is used in order to achieve a joint estimation of the state vector and the changes in the considered parameters. Finally, a bank of filters is, as in [2], used in order to detect the appearance of heart valve diseases, particularly stenosis and regurgitation. The first numerical results obtained are presented.
Date of AwardJul 2012
Original languageEnglish
Awarding Institution
  • Physical Science and Engineering
SupervisorMeriem Laleg (Supervisor)

Keywords

  • Observers
  • Hybrid system
  • Fault detection and isolation
  • Cardiovascular system

Cite this

'