Cycloalkane Metathesis using a Bi-metallic System: Understanding the Effect of Second metal in Metathesis Reaction

  • Ahmed Alshanqiti

Student thesis: Master's Thesis

Abstract

Over the past decades, since the discovery of a single–site silica-supported catalyst for the alkane metathesis reaction by our group, we have been extensively working on the development of supported catalytic systems for the improved alkane metathesis reaction. During these developments, we understand the reaction mechanism and reached a new perspective for the synthesis of various supported bimetallic systems via the surface organometallic chemistry (SOMC) approach. Recently, with this bi-metallic system, we got a very high TON (10000) in propane metathesis reaction. As these catalysts are very efficient for linear alkanes we thought to apply it for cyclo-alkanes specifically, for cyclo-octane metathesis expecting better activity. Besides, the value of the ring alkanes are higher than the linear alkanes. The current work demonstrates a combination of [(ΞSi−O−)W(Me)5] and [(ΞSi− O−)Ti(Np)3 pre-catalyst with several supports (SiO2-700, SBA-15 and MCM-41) for metathesis of cyclooctane. The catalysts have been synthesized and fully characterized by elemental analysis (EA), FT-IR and NMR spectroscopies. After fully characterization the bi-metallic catalyst was tested for metathesis of cyclooctane with highest ever TON 2500 as compared to that of mono-metallic catalyst where we got 430 TON. Which again corroborates our prediction that bimetallic catalysts are better catalysts than monometallic catalysts.
Date of AwardDec 2018
Original languageEnglish
Awarding Institution
  • Physical Science and Engineering
SupervisorJean-Marie Basset (Supervisor)

Cite this

'