An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

  • Cheng Chi

Student thesis: Master's Thesis

Abstract

This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.
Date of AwardMay 2015
Original languageEnglish (US)
Awarding Institution
  • Physical Science and Engineering
SupervisorHong G. Im (Supervisor)

Keywords

  • Ghost-Cell Method
  • Compressible Flow Simulation
  • Adaptive Mesh Refinement
  • Cartesoam Grid

Cite this

'