A Study of the Pelagic Larval Duration of Acropora humilis, Coral Recruitment and Connectivity in the Saudi Arabian Red Sea

  • Maha T. Khalil

Student thesis: Master's Thesis

Abstract

Combined knowledge of the pelagic larval duration of coral species and coral recruitment patterns can provide evidence of inter-reef connectivity and indicate a reef’s ability to recover. We attempted to determine the maximum pelagic larval duration of Acropora humilis. Larvae were reared in a controlled environment unfavorable for settlement. The larvae lived in a pelagic state for a maximum of 29 days, although this is probably an underestimate of actual longevity for this species. Given the information available from the literature with respect to larval dispersal rates, it is not expected that larvae with this longevity will disperse further than 10-20 km from their natal reef, if at all. A long-term recruitment monitoring project was also set up on Abu Shosha Reef, which suffered nearly complete coral loss due to a bleaching event in summer of 2010. In April 2011, 60 settlement plates were placed on the reef. In July, a total of 102 living scleractinian recruits were counted on the plates. While pocilloporids were the most dominant recruits on the reef (57.8%), about 20.6% of living recruits belonged to Acroporidae, a family whose live cover on the reef is extremely low (0.67%). However, the overall mean density of recruits was very low (1.7 living recruits/100cm2) compared to similar studies around the world despite the spawning season having just ended. Fish surveys showed herbivore biomass to be very low compared to other reef systems in the world, but densities were significantly higher than another reef in the Red Sea with about 10 times more live coral cover. Recovery from bleaching for Abu Shosha and similar reefs in the region may be very slow relative to rates observed in other parts of the world if recruitment rates and herbivore communities remain low.
Date of AwardDec 12 2011
Original languageEnglish (US)
Awarding Institution
  • Biological, Environmental Science and Engineering
SupervisorMichael Berumen (Supervisor)

Cite this

'