ZnFe2O4 nanoparticles dispersed in a highly porous silica aerogel matrix: A magnetic study

S. Bullita, Alberto Casu, M. F. Casula, G. Concas, F. Congiu, A. Corrias*, Andrea Falqui, D. Loche, C. Marras

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

We report the detailed structural characterization and magnetic investigation of nanocrystalline zinc ferrite nanoparticles supported on a silica aerogel porous matrix which differ in size (in the range 4-11 nm) and the inversion degree (from 0.4 to 0.2) as compared to bulk zinc ferrite which has a normal spinel structure. The samples were investigated by zero-field-cooling- field-cooling, thermo-remnant DC magnetization measurements, AC magnetization investigation and Mössbauer spectroscopy. The nanocomposites are superparamagnetic at room temperature; the temperature of the superparamagnetic transition in the samples decreases with the particle size and therefore it is mainly determined by the inversion degree rather than by the particle size, which would give an opposite effect on the blocking temperature. The contribution of particle interaction to the magnetic behavior of the nanocomposites decreases significantly in the sample with the largest particle size. The values of the anisotropy constant give evidence that the anisotropy constant decreases upon increasing the particle size of the samples. All these results clearly indicate that, even when dispersed with low concentration in a non-magnetic and highly porous and insulating matrix, the zinc ferrite nanoparticles show a magnetic behavior similar to that displayed when they are unsupported or dispersed in a similar but denser matrix, and with higher loading. The effective anisotropy measured for our samples appears to be systematically higher than that measured for supported zinc ferrite nanoparticles of similar size, indicating that this effect probably occurs as a consequence of the high inversion degree.

Original languageEnglish (US)
Pages (from-to)4843-4852
Number of pages10
JournalPhysical Chemistry Chemical Physics
Volume16
Issue number10
DOIs
StatePublished - Mar 14 2014

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles dispersed in a highly porous silica aerogel matrix: A magnetic study'. Together they form a unique fingerprint.

Cite this