Wave-equation dispersion inversion of surface waves recorded on irregular topography

Jing Li, Gerard T. Schuster, Fan-Chi Lin, Amir Alam

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Original languageEnglish (US)
Title of host publicationSEG Technical Program Expanded Abstracts 2017
PublisherSociety of Exploration Geophysicists
DOIs
StatePublished - Aug 17 2017

Fingerprint

Dive into the research topics of 'Wave-equation dispersion inversion of surface waves recorded on irregular topography'. Together they form a unique fingerprint.

Cite this