Variability of dynamic source parameters inferred from kinematic models of past earthquakes

M. Causse, L. A. Dalguer, Paul Martin Mai

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

We analyse the scaling and distribution of average dynamic source properties (fracture energy, static, dynamic and apparent stress drops) using 31 kinematic inversion models from 21 crustal earthquakes. Shear-stress histories are computed by solving the elastodynamic equations while imposing the slip velocity of a kinematic source model as a boundary condition on the fault plane. This is achieved using a 3-D finite difference method in which the rupture kinematics are modelled with the staggered-grid-split-node fault representation method of Dalguer & Day. Dynamic parameters are then estimated from the calculated stress-slip curves and averaged over the fault plane. Our results indicate that fracture energy, static, dynamic and apparent stress drops tend to increase with magnitude. The epistemic uncertainty due to uncertainties in kinematic inversions remains small (ϕ ∼ 0.1 in log10 units), showing that kinematic source models provide robust information to analyse the distribution of average dynamic source parameters. The proposed scaling relations may be useful to constrain friction law parameters in spontaneous dynamic rupture calculations for earthquake source studies, and physics-based near-source ground-motion prediction for seismic hazard and risk mitigation.
Original languageEnglish (US)
Pages (from-to)1754-1769
Number of pages16
JournalGeophysical Journal International
Volume196
Issue number3
DOIs
StatePublished - Dec 24 2013

Fingerprint

Dive into the research topics of 'Variability of dynamic source parameters inferred from kinematic models of past earthquakes'. Together they form a unique fingerprint.

Cite this