UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation

Feng Luo, Changsheng Yan, Lilong Dang, Rajamani Krishna, Wei Zhou, Hui Wu, Xinglong Dong, Yu Han, Tong-Liang Hu, Michael O’Keeffe, Lingling Wang, Mingbiao Luo, Rui-Biao Lin, Banglin Chen

Research output: Contribution to journalArticlepeer-review

271 Scopus citations

Abstract

A new metal-organic framework Zn2(H2O)-(dobdc)·0.5(H2O) (UTSA-74, H4dobdc = 2,5-dioxido-1,4-benzenedicarboxylic acid), Zn-MOF-74/CPO-27-Zn isomer, has been synthesized and structurally characterized. It has a novel four coordinated fgl topology with one-dimensional channels of about 8.0 Å. Unlike metal sites in the wellestablished MOF-74 with a rod-packing structure in which each of them is in a five coordinate square pyramidal coordination geometry, there are two different Zn2+ sites within the binuclear secondary building units in UTSA-74 in which one of them (Zn1) is in a tetrahedral while another (Zn2) in an octahedral coordination geometry. After activation, the two axial water molecules on Zn2 sites can be removed, generating UTSA-74a with two accessible gas binding sites per Zn2 ion. Accordingly, UTSA-74a takes up a moderately high and comparable amount of acetylene (145 cm3/cm3) to Zn-MOF-74. Interestingly, the accessible Zn2+ sites in UTSA-74a are bridged by carbon dioxide molecules instead of being terminally bound in Zn-MOF-74, so UTSA-74a adsorbs a much smaller amount of carbon dioxide (90 cm3/cm3) than Zn-MOF-74 (146 cm3/cm3) at room temperature and 1 bar, leading to a superior MOF material for highly selective C2H2/CO2 separation. X-ray crystal structures, gas sorption isotherms, molecular modeling, and simulated and experimental breakthroughs comprehensively support this result. © 2016 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)5678-5684
Number of pages7
JournalJournal of the American Chemical Society
Volume138
Issue number17
DOIs
StatePublished - Apr 26 2016

Fingerprint Dive into the research topics of 'UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation'. Together they form a unique fingerprint.

Cite this