Unsteady deflagration speed in an auto-ignitive DME/Air mixture at NTC conditions

Swapnil Desai, Ramanan Sankaran, Hong G. Im

Research output: Contribution to conferencePaperpeer-review


In modern engine concepts such as homogeneous charge compression ignition (HCCI) and reactivity controlled compression ignition (RCCI) engines, the presence of a highly reactive premixed charge leads to the formation of deflagration fronts that have the characteristics of both autoignition and diffusion propelled propagation. The presence of such dual combustion modes in these engines presents difficulties in predicting combustion phasing as well as the rate of heat release. In this paper, the propagation speed of an auto-ignitive DME/Air mixture subjected to time-varying temperature fluctuations is computationally studied in a onedimensional flow configuration with reduced kinetics and transport. These studies are carried out at conditions within the Negative Temperature Coefficient (NTC) regime relevant to HCCI/RCCI engines. Different time scales of thermal stratification are simulated to investigate their influence on spontaneous propagation. The main goal is to determine how the propagation speed of a thermally stratified front varies compared to a homogeneous mixture.

Original languageEnglish (US)
StatePublished - Jan 1 2017
Event10th U.S. National Combustion Meeting - College Park, United States
Duration: Apr 23 2017Apr 26 2017


Conference10th U.S. National Combustion Meeting
CountryUnited States
CityCollege Park


  • Deflagration
  • Negative Temperature Coefficient (NTC)
  • Spontaneous propagation
  • Stratification

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Physical and Theoretical Chemistry
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Unsteady deflagration speed in an auto-ignitive DME/Air mixture at NTC conditions'. Together they form a unique fingerprint.

Cite this