Unraveling reaction networks behind the catalytic oxidation of methane with H2O2 over a mixed-metal MIL-53(Al,Fe) MOF catalyst

Ágnes Szécsényi, Guanna Li, Jorge Gascon, Evgeny A. Pidko

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Reaction paths underlying the catalytic oxidation of methane with HO over an Fe containing MIL-53(Al) metal-organic framework were studied by periodic DFT calculations. Not only the activation of methane, but the full reaction network was considered, which includes the formation of the active site, the overoxidation of methane to CO and the decomposition of HO to HO and O. Calculations indicate that the activation barrier for the initial activation of the Fe sites upon reaction with HO is comparable to that of the subsequent C-H activation and also of the reaction steps involved in the undesirable overoxidation processes. The pronounced selectivity of the oxidation reaction over MIL-53(Al,Fe) towards the target mono-oxygenated CHOH and CHOOH products is attributed to the limited coordination freedom of the Fe species encapsulated in the extended octahedral [AlO] structure-forming chains, which effectively prevents the direct overoxidation paths prior to product desorption from the active sites. Importantly, our computational analysis reveals that the active sites for the desired methane oxidation are able to much more efficiently promote the direct catalytic HO decomposition reaction, rendering thus the current combination of the active site and the reactants undesirable for the prospective methane valorization process.
Original languageEnglish (US)
Pages (from-to)6765-6773
Number of pages9
JournalChemical Science
Volume9
Issue number33
DOIs
StatePublished - 2018

Bibliographical note

KAUST Repository Item: Exported on 2021-02-19
Acknowledgements: The Dutch Science Foundation (NWO) is gratefully acknowledged for financial support through the VIDI personal grant “MetMOFCat”. Dr G. Li acknowledges the financial support from NWO for her personal VENI grant (no. 016.Veni.172.034). SurfSARA and NWO (The Netherlands Organisation for Scientific Research) are acknowledged for providing access to supercomputer resources.

Fingerprint Dive into the research topics of 'Unraveling reaction networks behind the catalytic oxidation of methane with H2O2 over a mixed-metal MIL-53(Al,Fe) MOF catalyst'. Together they form a unique fingerprint.

Cite this