Understanding the risk of scaling and fouling in hollow fiber forward osmosis membrane application

Tahir Majeed, Sherub Phuntsho, Sanghyun Jeong, Yanxia Zhao, Baoyu Gao, Ho Kyong Shon

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Fouling studies of forward osmosis (FO) were mostly conducted based on fouling evaluation principals applied to pressure membrane processes such as reverse osmosis (RO)/nanofiltration (NF)/microfiltration (MF)/ultrafiltration (UF). For RO/NF/MF/UF processes, the single flux driving force (hydraulic pressure) remains constant, thus the fouling effect is easily evaluated by comparing flux data with the baseline. Whilst, the scenario of fouling effects for FO process is entirely different from RO/NF/MF/UF processes. Continuously changing driving force (osmotic pressure difference), the changes in concentration polarization associated with the varying draw solution/feed solution concentration and the fouling layer effects collectively influence the FO flux. Thus, usual comparison of the FO flux outcome with the baseline results can not exactly indicate the real affect of membrane fouling, rather presents a misleading cumulative effect. This study compares the existing FO fouling technique with an alternate fouling evaluation approach using two FO set-ups. Scaling and fouling risk for hollow fiber FO was separately investigated using synthetic water samples and model organic foulants as alginate, humic acid and bovine serum albumin. Results indicated that FO flux declines up to 5% and 49% in active layer-feed solution and active layer-draw solution orientations respectively.
Original languageEnglish (US)
Pages (from-to)452-464
Number of pages13
JournalProcess Safety and Environmental Protection
Volume104
DOIs
StatePublished - Jun 25 2016

ASJC Scopus subject areas

  • Environmental Chemistry
  • Chemical Engineering(all)
  • Environmental Engineering
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Understanding the risk of scaling and fouling in hollow fiber forward osmosis membrane application'. Together they form a unique fingerprint.

Cite this