Ultra-fast secure communication with complex systems in classical channels (Conference Presentation)

Valerio Mazzone, Andrea Di Falco, Andrea Fratalocchi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Developing secure communications is a research area of growing interest. During the past years, several cryptographic schemes have been developed, with Quantum cryptography being a promising scheme due to the use of quantum effects, which make very difficult for an eavesdropper to intercept the communication. However, practical quantum key distribution methods have encountered several limitations; current experimental realizations, in fact, fail to scale up on long distances, as well as in providing unconditional security and speed comparable to classical optical communications channels. Here we propose a new, low cost and ultra-fast cryptographic system based on a fully classical optical channel. Our cryptographic scheme exploits the complex synchronization of two different random systems (one on the side of the sender and another on the side of the receiver) to realize a “physical” one paid system. The random medium is created by an optical chip fabricated through electron beam lithography on a Silicon On Insulator (SOI) substrate. We present experiments with ps lasers and commercial fibers, showing the ultrafast distribution of a random key between two users (Alice and Bob), with absolute no possibility for a passive/active eavesdropper to intercept the communication. Remarkably, this system enables the same security of quantum cryptography, but with the use of a classical communication channel. Our system exploits a unique synchronization that exists between two different random systems, and at such is extremely versatile and can enable safe communications among different users in standards telecommunications channels.
Original languageEnglish (US)
Title of host publicationSilicon Photonics XII
PublisherSPIE
ISBN (Print)9781510606579
DOIs
StatePublished - Apr 28 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

Fingerprint Dive into the research topics of 'Ultra-fast secure communication with complex systems in classical channels (Conference Presentation)'. Together they form a unique fingerprint.

Cite this