Transfer learning for low frequency extrapolation from shot gathers for FWI applications

Oleg Ovcharenko, Vladimir Kazei, Daniel Peter, Tariq Ali Alkhalifah

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Low-frequency data proved to be crucial for robust full-waveform inversion (FWI) applications. However, acquiring those data in the field is a challenging and costly task. Deep neural networks can be trained to extrapolate missing low frequencies, but no optimal network configuration exists. Therefore, the search for an acceptable network architecture is a tedious empirical task whose outcome heavily affects the performance of the application. Here, we propose and utilize transfer learning to reduce the computational efforts otherwise spent on an optimal architecture search and an initial network training. We re-train the light-weight MobileNet convolutional network to infer low-frequency data from a frequency-domain representation of the individual shot-gathers, which leads to an efficient, yet accurate inference of low frequencies according to wavenumber theory. In particular, we show that the extrapolated 0.25 - 1 Hz from 2-4.5 Hz data are accurate enough for acoustic FWI on part of the original BP 2004 model and the Marmousi II model of double scale. We bridge the gap between the 1 Hz predicted and the 2 Hz modeled data by the application of a Sobolev space norm regularization.
Original languageEnglish (US)
Title of host publication81st EAGE Conference and Exhibition 2019
PublisherEAGE Publications BV
ISBN (Print)9789462822894
DOIs
StatePublished - Aug 26 2019

Fingerprint

Dive into the research topics of 'Transfer learning for low frequency extrapolation from shot gathers for FWI applications'. Together they form a unique fingerprint.

Cite this