Towards a better understanding of microbial carbon flux in the sea

Josep M. Gasol, Jarone Pinhassi, Laura Alonso-Sáez, Hugh Ducklow, Gerhard J. Herndl, Michal Koblížek, Matthias Labrenz, Yawei Luo, Xosé Anxelu G. Morán, Thomas Reinthaler, Meinhard Simon

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

We now have a relatively good idea of how bulk microbial processes shape the cycling of organic matter and nutrients in the sea. The advent of the molecular biology era in microbial ecology has resulted in advanced knowledge about the diversity of marine microorganisms, suggesting that we might have reached a high level of understanding of carbon fluxes in the oceans. However, it is becoming increasingly clear that there are large gaps in the understanding of the role of bacteria in regulating carbon fluxes. These gaps may result from methodological as well as conceptual limitations. For example, should bacterial production be measured in the light? Can bacterial production conversion factors be predicted, and how are they affected by loss of tracers through respiration? Is it true that respiration is relatively constant compared to production? How can accurate measures of bacterial growth efficiency be obtained? In this paper, we discuss whether such questions could (or should) be addressed. Ongoing genome analyses are rapidly widening our understanding of possible metabolic pathways and cellular adaptations used by marine bacteria in their quest for resources and struggle for survival (e.g. utilization of light, acquisition of nutrients, predator avoidance, etc.). Further, analyses of the identity of bacteria using molecular markers (e.g. subgroups of Bacteria and Archaea) combined with activity tracers might bring knowledge to a higher level. Since bacterial growth (and thereby consumption of DOC and inorganic nutrients) is likely regulated differently in different bacteria, it will be critical to learn about the life strategies of the key bacterial species to achieve a comprehensive understanding of bacterial regulation of C fluxes. Finally, some processes known to occur in the microbial food web are hardly ever characterized and are not represented in current food web models. We discuss these issues and offer specific comments and advice for future research agendas.

Original languageEnglish (US)
Pages (from-to)21-38
Number of pages18
JournalAquatic Microbial Ecology
Volume53
Issue number1
DOIs
StatePublished - Sep 2008

Keywords

  • Bacteria
  • Carbon flux
  • Chemoautotrophy
  • Genomics
  • Light
  • Microbial ecology
  • Models
  • Ocean
  • Protists

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Aquatic Science

Fingerprint Dive into the research topics of 'Towards a better understanding of microbial carbon flux in the sea'. Together they form a unique fingerprint.

Cite this