Time-resolved CRDS measurements of the N2(A3Σ u+) density produced by nanosecond discharges in atmospheric pressure nitrogen and air

Gabi D. Stancu, Mario Janda, Farah Kaddouri, Deanna Lacoste, Christophe O. Laux

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Cavity ring-down spectroscopy (CRDS) is used to measure the number density of N2(N3(A3Σu+) metastables produced by nanosecond repetitively pulsed discharges in nitrogen and air preheated at 1000 K and atmospheric pressure. The densities of N 2(A) are inferred from the absorbance of the Q1(22) and Q3(16) lines of the (2 ← 0) vibrational band of the first positive system (B3Πg - N2(A 3Σu+)ofN2 at 769.945 nm. The procedure for determining the temporal evolution of the density of metastable from the measured ring down signals is presented. The maximum number densities are in the range of 1014-1015 molecules cm-3 for air and nitrogen discharges, respectively. In nitrogen, the decay of the N2(A) density is shown to be a second-order process with a rate coefficient of 1.1 × 10-9 cm3 s-1 at 1600 K with a factor of 2 uncertainty. In air, the decay is estimated to be 1 order of magnitude faster than that in nitrogen owing to quenching by atomic and molecular oxygen. Furthermore, the rotational temperature is determined by comparison of CRDS measurements and simulations of several rotational lines of the (2 ← 0) band of the first positive system of N2 between 769.8 and 770.7 nm. The rotational and vibrational temperatures are also determined by comparison of optical emission measurements and simulations of the second positive system of N2 between 365 and 385 nm. In these CRDS measurements, we achieved a temporal resolution down to 50 ns.

Original languageEnglish (US)
Pages (from-to)201-208
Number of pages8
JournalJournal of Physical Chemistry A
Volume114
Issue number1
DOIs
StatePublished - Jan 14 2010

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Time-resolved CRDS measurements of the N<sub>2</sub>(A<sup>3</sup>Σ <sub>u</sub><sup>+</sup>) density produced by nanosecond discharges in atmospheric pressure nitrogen and air'. Together they form a unique fingerprint.

Cite this