Thrombospondin-1 secreted by human umbilical cord blood-derived mesenchymal stem cells rescues neurons from synaptic dysfunction in Alzheimer’s disease model

Dong Hyun Kim, Hoon Lim, Dahm Lee, Soo Jin Choi, Wonil Oh, Yoon Sun Yang, Jeong Su Oh, Hyun Ho Hwang, Hong Bae Jeon

    Research output: Contribution to journalArticlepeer-review

    29 Scopus citations

    Abstract

    Alzheimer's disease (AD) is an incurable neurodegenerative disease characterised clinically by learning and memory impairments. Amyloid beta (Aβ) peptide-induced synaptic dysfunction is a pathological process associated with early-stage AD. Here, we show that paracrine action of human umbilical cord blood-derived-mesenchymal stem cells (hUCB-MSCs) protects the hippocampus from synaptic-density loss in in vitro and in vivo AD models. To identify paracrine factors underlying this rescue effect, we analysed hUCB-MSCs' secretome co-cultured with Aβ42-treated mouse hippocampal neurons. Thrombospondin-1 (TSP-1), a protein secreted by hUCB-MSCs in in vitro and 5XFAD AD mouse models, was selected for study. Treatment with exogenous recombinant TSP-1 or co-cultures with hUCB-MSCs significantly increased expression of synaptic-density markers, such as synaptophysin (SYP) and post-synaptic density protein-95 (PSD-95) in Aβ42-treated mouse hippocampal neurons. Knockdown of TSP-1 expression in hUCB-MSCs through small interfering RNA (siRNA) abolished the reversal of Aβ42-induced hippocampal synaptic-density loss. We demonstrate that the rescue effect of hUCB-MSC-secreted TSP-1 was mediated by neuroligin-1 (NLGN1) or α2δ-1 receptors. Interestingly, NLGN1 and α2δ-1 expression, which was reduced in Aβ42-treated hippocampal neurons, increased in co-cultures with hUCB-MSCs or exogenous TSP-1. Together, these findings suggest that hUCB-MSCs can attenuate Aβ42-induced synaptic dysfunction by regulating TSP-1 release, thus providing a potential alternative therapeutic option for early-stage AD.
    Original languageEnglish (US)
    JournalScientific Reports
    Volume8
    Issue number1
    DOIs
    StatePublished - Jan 10 2018

    Fingerprint

    Dive into the research topics of 'Thrombospondin-1 secreted by human umbilical cord blood-derived mesenchymal stem cells rescues neurons from synaptic dysfunction in Alzheimer’s disease model'. Together they form a unique fingerprint.

    Cite this