Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

Anutosh Chakraborty, Bidyut Baran Saha, Kim Choon Ng, Shigeru Koyama, Kandadai Srinivasan

    Research output: Contribution to journalArticlepeer-review

    70 Scopus citations

    Abstract

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.
    Original languageEnglish (US)
    Pages (from-to)2204-2211
    Number of pages8
    JournalLangmuir
    Volume25
    Issue number4
    DOIs
    StatePublished - Feb 17 2009

    Fingerprint Dive into the research topics of 'Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces'. Together they form a unique fingerprint.

    Cite this