TY - JOUR
T1 - The caseinolytic protease complex component CLPC1 in Arabidopsis maintains proteome and RNA homeostasis in chloroplasts
AU - Zhang, ShouDong
AU - Zhang, Huoming
AU - Xia, Yiji
AU - Xiong, Liming
N1 - KAUST Repository Item: Exported on 2021-02-19
Acknowledged KAUST grant number(s): BAS/1/1007-01-01
Acknowledgements: Acknowledgements: The authors thank Prof. Hsou-min Li (Institute of Molecular Biology, Taiwan) for clpc1, ΔN and CP lines and Prof. Paul Jarvis (Department of Plant Science, Oxford University, U.K) for 1.4.3 and 1.4.4 lines used in the work. We also thank the KAUST Bioscience Core Facility for quantitative proteomics, we also thank the PRIDE Team to help us deposit the raw data to proteomeXchange. Funding: This work was supported by King Abdullah University of Science and Technology Baseline Grant BAS/1/1007-01-01 (to L.X), Hong Kong RGC GRF fund (GRF 12100717 to SZ), Hong Kong Baptist University FRG2/16–17/026 (to SZ), and HKBU Strategic Development Fund SDF 15–1012-P04 (to YX) as well as Hong Kong Research Grants Council Area of Excellent scheme, Grant/Award Number: AoE/M-403/16.
PY - 2018/9/12
Y1 - 2018/9/12
N2 - Homeostasis of the proteome is critical to the development of chloroplasts and also affects the expression of certain nuclear genes. CLPC1 facilitates the translocation of chloroplast pre-proteins and mediates protein degradation.We found that proteins involved in photosynthesis are dramatically decreased in their abundance in the clpc1 mutant, whereas many proteins involved in chloroplast transcription and translation were increased in the mutant. Expression of the full-length CLPC1 protein, but not of the N-terminus-deleted CLPC1 (ΔN), in the clpc1 mutant background restored the normal levels of most of these proteins. Interestingly, the ΔN complementation line could also restore some proteins affected by the mutation to normal levels. We also found that that the clpc1 mutation profoundly affects transcript levels of chloroplast genes. Sense transcripts of many chloroplast genes are up-regulated in the clpc1 mutant. The level of SVR7, a PPR protein, was affected by the clpc1 mutation. We showed that SVR7 might be a target of CLPC1 as CLPC1-SVR7 interaction was detected through co-immunoprecipitation.Our study indicates that in addition to its role in maintaining proteome homeostasis, CLPC1 and likely the CLP proteasome complex also play a role in transcriptome homeostasis through its functions in maintaining proteome homeostasis.
AB - Homeostasis of the proteome is critical to the development of chloroplasts and also affects the expression of certain nuclear genes. CLPC1 facilitates the translocation of chloroplast pre-proteins and mediates protein degradation.We found that proteins involved in photosynthesis are dramatically decreased in their abundance in the clpc1 mutant, whereas many proteins involved in chloroplast transcription and translation were increased in the mutant. Expression of the full-length CLPC1 protein, but not of the N-terminus-deleted CLPC1 (ΔN), in the clpc1 mutant background restored the normal levels of most of these proteins. Interestingly, the ΔN complementation line could also restore some proteins affected by the mutation to normal levels. We also found that that the clpc1 mutation profoundly affects transcript levels of chloroplast genes. Sense transcripts of many chloroplast genes are up-regulated in the clpc1 mutant. The level of SVR7, a PPR protein, was affected by the clpc1 mutation. We showed that SVR7 might be a target of CLPC1 as CLPC1-SVR7 interaction was detected through co-immunoprecipitation.Our study indicates that in addition to its role in maintaining proteome homeostasis, CLPC1 and likely the CLP proteasome complex also play a role in transcriptome homeostasis through its functions in maintaining proteome homeostasis.
UR - http://hdl.handle.net/10754/628727
UR - https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-018-1396-0
UR - http://www.scopus.com/inward/record.url?scp=85053280790&partnerID=8YFLogxK
U2 - 10.1186/s12870-018-1396-0
DO - 10.1186/s12870-018-1396-0
M3 - Article
C2 - 30208840
AN - SCOPUS:85053280790
VL - 18
JO - BMC Plant Biology
JF - BMC Plant Biology
SN - 1471-2229
IS - 1
ER -