Structure, Ion Transport, and Rheology of Nanoparticle Salts

Yu Ho Wen, Yingying Lu, Kerianne M. Dobosz, Lynden A. Archer

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Above a critical surface chemistry-dependent particle loading associated with nanoscale interparticle spacing, ligand-ligand interactions-both electrostatic and steric-come into play and govern the structure and dynamics of charged oligomer-functionalized nanoparticle suspensions. We report in particular on the structure, ion transport, and rheology of suspensions of nanoparticle salts created by cofunctionalization of silica particles with tethered sulfonate salts and oligomers. Dispersion of the hairy ionic particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through counterion size (i.e., Li+, Na+, and K+) and dielectric properties of the dispersing medium. Analysis of small-angle X-ray scattering (SAXS) structure factors and the mechanical modulus shows that when the interparticle spacing approaches nanometer dimensions, weakly entangled anchored ligands experience strong and long-lived topological constraints analogous to those normally found in well-entangled polymeric fluids. This finding provides insight into the molecular origins of the surprisingly similar rubbery plateau moduli observed in hairy nanoparticle suspensions and entangled polymers of the same chemistry as the tethered ligands. Additionally, we find that a time-composition superposition (TCS) principle exists for the suspensions, which can be used to substantially extend the observation time over which dynamics are observed in jammed, soft glassy suspensions. Application of TCS reveals dynamical similarities between the suspensions and entangled solutions of linear polymer chains; i.e., a hairy particle trapped in a cage appears to exhibit analogous dynamics to a long polymer chain confined to a tube. © 2014 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)4479-4492
Number of pages14
JournalMacromolecules
Volume47
Issue number13
DOIs
StatePublished - Jun 25 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Structure, Ion Transport, and Rheology of Nanoparticle Salts'. Together they form a unique fingerprint.

Cite this