Structural basis for the recognition of sulfur in phosphorothioated DNA

Guang Liu, Wencheng Fu, Zhenyi Zhang, Yao He, Hao Yu, Yuli Wang, Xiaolei Wang, Yi-Lei Zhao, Zixin Deng, Geng Wu, Xinyi He

    Research output: Contribution to journalArticlepeer-review

    15 Scopus citations


    There have been very few reports on protein domains that specifically recognize sulfur. Here we present the crystal structure of the sulfur-binding domain (SBD) from the DNA phosphorothioation (PT)-dependent restriction endonuclease ScoMcrA. SBD contains a hydrophobic surface cavity that is formed by the aromatic ring of Y164, the pyrolidine ring of P165, and the non-polar side chains of four other residues that serve as lid, base, and wall of the cavity. The SBD and PT-DNA undergo conformational changes upon binding. The S187RGRR191 loop inserts into the DNA major groove to make contacts with the bases of the GPSGCC core sequence. Mutating key residues of SBD impairs PT-DNA association. More than 1000 sequenced microbial species from fourteen phyla contain SBD homologs. We show that three of these homologs bind PT-DNA in vitro and restrict PT-DNA gene transfer in vivo. These results show that SBD-like PT-DNA readers exist widely in prokaryotes.
    Original languageEnglish (US)
    JournalNature Communications
    Issue number1
    StatePublished - Nov 8 2018


    Dive into the research topics of 'Structural basis for the recognition of sulfur in phosphorothioated DNA'. Together they form a unique fingerprint.

    Cite this