Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames

Daegeun Park, Byungchul Choi, Min Suk Cha, Suk Ho Chung

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

The effects of DC electric fields on non-premixed ethylene flames in a counterflow burner were studied experimentally with a focus on the reduction of soot particles. The experiment was conducted by connecting a high voltage terminal and a ground terminal to a lower (fuel) and upper (oxidizer) nozzle, respectively. We applied direct current (DC) potentials in a range of -5 kV < Vdc < 5 kV. Uniform electric fields were then generated in the gap between the two nozzles. The experimental conditions were selected to cover both soot formation (SF) and soot formation oxidation (SFO) flames. The flames subjected to the negative electric fields moved toward the fuel nozzle because of an ionic wind due to the Lorentz force acting on the positive ions in the flames. In addition, the yellow luminosity significantly decreased, indicating changes in the sooting characteristics. To analyze the sooting characteristics under the electric fields, planar laser induced incandescence (PLII) and fluorescence (PLIF) techniques were used to visualize the soot, polycyclic aromatic hydrocarbons (PAHs), and OH radicals. The sooting limits in terms of the fuel and oxygen mole fractions were measured. No substantial soot formation due to the effects of the DC electric fields for the tested range of voltages and reactant mole fractions could be identified. The detailed flame behaviors and sooting characteristics under the DC electric fields are discussed. Copyright © Taylor & Francis Group, LLC.
Original languageEnglish (US)
Pages (from-to)644-656
Number of pages13
JournalCombustion Science and Technology
Volume186
Issue number4-5
DOIs
StatePublished - Apr 23 2014

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)
  • Chemical Engineering(all)
  • Chemistry(all)
  • Fuel Technology

Fingerprint

Dive into the research topics of 'Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames'. Together they form a unique fingerprint.

Cite this