Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties

Saahil Mehra, Mark G. Christoforo, Peter Peumans, Alberto Salleo

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Metal nanowire transparent networks are promising replacements to indium tin oxide (ITO) transparent electrodes for optoelectronic devices. While the transparency and sheet resistance are key metrics for transparent electrode performance, independent control of the film light scattering properties is important to developing multifunctional electrodes for improved photovoltaic absorption. Here we show that controlled incorporation of ZnO nanopyramids into a metal nanowire network film affords independent, highly tunable control of the scattering properties (haze) with minimal effects on the transparency and sheet resistance. Varying the zinc oxide/silver nanostructure ratios prior to spray deposition results in sheet resistances, transmission (600 nm), and haze (600 nm) of 6-30 Ω –¡$^{-1}$, 68-86%, and 34-66%, respectively. Incorporation of zinc oxide nanopyramid scattering agents into the conducting nanowire mesh has a negligible effect on mesh connectivity, providing a straightforward method of controlling electrode scattering properties. The decoupling of the film scattering power and electrical characteristics makes these films promising candidates for highly scattering transparent electrodes in optoelectronic devices and can be generalized to other metal nanowire films as well as carbon nanotube transparent electrodes. © 2013 The Royal Society of Chemistry.
Original languageEnglish (US)
Pages (from-to)4400
JournalNanoscale
Volume5
Issue number10
DOIs
StatePublished - 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties'. Together they form a unique fingerprint.

Cite this