Shear layer and flow transition on a low speed full wind turbine blade

Adnan Qamar, Wei Zhang, Wei Gao, Ravi Samtaney

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


We present Direct Numerical Simulation (DNS) of low-speed flow past a full stationary wind-turbine blade (without twist). This work is motivated to produce a DNS database for verification of solvers and turbulent models utilized in wind-turbine modeling community. DNS computations are carried out for a Reynolds numbers of Re = 10, 000 with blade aligned along the free stream direction (zero angle of attack). Composite overlapping grid approach is utilized to perform the DNS. Three different shedding regimes along the blade length are observed. The first regime comprises of a von-Kármán type shedding in cylinder shaft region, followed by a near body shear layer break down along the airfoil section of the blade. The blade tip region is characterized by a long tip vortex, which exits the computational plane without being significant perturbed. Flow transition from laminar to turbulent flow is observed along the blade length with increasing turbulent fluctuations as one traverses the blade from the base to the blade tip, where the flow remains laminar. Strouhal numbers is found to decrease monotonously along the blade length and achieves a zero value at the blade tip. Average lift and drag coefficients for the whole turbine blade are also reported for the case investigated.

Original languageEnglish (US)
Title of host publicationProceedings of the 19th Australasian Fluid Mechanics Conference, AFMC 2014
PublisherAustralasian Fluid Mechanics Society
ISBN (Electronic)9780646596952
StatePublished - Jan 1 2014
Event19th Australasian Fluid Mechanics Conference, AFMC 2014 - Melbourne, Australia
Duration: Dec 8 2014Dec 11 2014

Publication series

NameProceedings of the 19th Australasian Fluid Mechanics Conference, AFMC 2014


Other19th Australasian Fluid Mechanics Conference, AFMC 2014

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes

Cite this