Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

Zhen Lei Cheng, Xue Li, Ying Da Liu, Neal Tai-Shung Chung

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.
Original languageEnglish (US)
Pages (from-to)119-129
Number of pages11
JournalJournal of Membrane Science
Volume506
DOIs
StatePublished - Jan 8 2016

ASJC Scopus subject areas

  • Biochemistry
  • Filtration and Separation
  • Materials Science(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation'. Together they form a unique fingerprint.

Cite this