Response of an electrostatically actuated microbeam to drop-table test

H. Ouakad*, M. I. Younis, F. Alsaleem, T. Levo, J. Pitarresi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In this work, we present a theoretical and experimental investigation into the response of an electrostatically actuated microbeam when subjected to drop-table test. For the theoretical part, a reduced-order model based on an Euler-Bernoulli beam model is utilized. The model accounts for the electrostatic bias on the microbeam and the shock pulse ofthe drop-table test. Simulation results are presented showing the combined effect of electrostatic force and mechanical shock in triggering early pull-in instability of the cantilever microbeams. Dynamic pull-in threshold as a function of the mechanical shock amplitude is shown over wide range of shock spanning hundred of thousand of g's up to zero g. For the experimental part, a micromachined cantilever beam made of gold of length 50 microns is subjected to drop-table tests while being biased by electrostatic loads. Several experimental data are shown demonstrating the phenomenon of collapse due to the combined shock and electrostatic forces. It is demonstrated also that by biasing short and too stiff microbeams with electrostatic voltages, their stiffuess is weakened. This lowers their threshold of collapse considerably to the range of acceleration that enables testing them with inhouse shock testing equipments, such as drop table tests.

Original languageEnglish (US)
Title of host publication2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010
DOIs
StatePublished - 2010
Externally publishedYes
Event2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010 - Bordeaux, France
Duration: Apr 26 2010Apr 28 2010

Other

Other2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010
CountryFrance
CityBordeaux
Period04/26/1004/28/10

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Electrical and Electronic Engineering
  • Theoretical Computer Science

Fingerprint

Dive into the research topics of 'Response of an electrostatically actuated microbeam to drop-table test'. Together they form a unique fingerprint.

Cite this