TY - JOUR

T1 - Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity

AU - Christoforou, Cleopatra

AU - Tzavaras, Athanasios

N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Research partially supported by the European Commission ITN project ”Modeling and computation of shocks and interfaces”. AET acknowledges the support of the King Abdullah University of Science and Technology (KAUST).

PY - 2017/12/21

Y1 - 2017/12/21

N2 - We extend the relative entropy identity to the class of hyperbolic-parabolic systems whose hyperbolic part is symmetrizable. The resulting identity is useful to provide measure valued weak versus strong uniqueness theorems for the hyperbolic problem. Also, it yields a convergence result in the zero-viscosity limit to smooth solutions in an Lp framework. The relative entropy identity is also developed for the system of gas dynamics for viscous and heat conducting gases, and for the system of thermoviscoelasticity with viscosity and heat-conduction. Existing differences between the example and the general hyperbolic theory are underlined.

AB - We extend the relative entropy identity to the class of hyperbolic-parabolic systems whose hyperbolic part is symmetrizable. The resulting identity is useful to provide measure valued weak versus strong uniqueness theorems for the hyperbolic problem. Also, it yields a convergence result in the zero-viscosity limit to smooth solutions in an Lp framework. The relative entropy identity is also developed for the system of gas dynamics for viscous and heat conducting gases, and for the system of thermoviscoelasticity with viscosity and heat-conduction. Existing differences between the example and the general hyperbolic theory are underlined.

UR - http://hdl.handle.net/10754/603957

UR - http://arxiv.org/abs/1603.08176

UR - http://www.scopus.com/inward/record.url?scp=85038614921&partnerID=8YFLogxK

U2 - 10.1007/s00205-017-1212-2

DO - 10.1007/s00205-017-1212-2

M3 - Article

VL - 229

SP - 1

EP - 52

JO - Archive for Rational Mechanics and Analysis

JF - Archive for Rational Mechanics and Analysis

SN - 0003-9527

IS - 1

ER -