TY - JOUR

T1 - Quasi-steady-state analysis of two-dimensional random intermittent search processes

AU - Bressloff, Paul C.

AU - Newby, Jay M.

N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUK-C1-013-4
Acknowledgements: This publication was based on work supported in part by the National Science Foundation (DMS-0813677) and by Grant No. KUK-C1-013-4 made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

PY - 2011/6/24

Y1 - 2011/6/24

N2 - We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.

AB - We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.

UR - http://hdl.handle.net/10754/599434

UR - https://link.aps.org/doi/10.1103/PhysRevE.83.061139

UR - http://www.scopus.com/inward/record.url?scp=79961044203&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.83.061139

DO - 10.1103/PhysRevE.83.061139

M3 - Article

C2 - 21797334

VL - 83

JO - Physical Review E

JF - Physical Review E

SN - 1539-3755

IS - 6

ER -