Propagation behaviors of twin premixed methane flame in a counterflow annular slot-burner under DC electric fields

Sung Hwan Yoon, Min Suk Cha*

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

Abstract

Under an electric field, hydrocarbon flames generate bidirectional ionic wind due to the movement of positive and negative ions to the cathode and the anode, respectively. Such bulk motion significantly influences combustion stability in positive or negative sense. However, a detail mechanism of ionic wind on premixed flames is still not clear. Here, we described the effects of direct current (DC) electric fields on propagating twin premixed methane flames in a counterflow, annular slot burner with particular emphasis on change of a flame displacement speed. Applying DC to a lower part of the burner with a grounded upper part, electric field lines were perpendicular to the moving direction of premixed-edge-flames propagating along the annular slots. To provide the propagation speeds of premixed edge-flames with respect to the unburned flow, a PIV (Particle Image Velocimetry) was adopted. Based on measured flame displacement speeds and unburned flow velocities in electric fields, we will produce corrected propagation speed of the premixed-edge-flames.

Original languageEnglish (US)
StatePublished - Jan 1 2017
Event11th Asia-Pacific Conference on Combustion, ASPACC 2017 - Sydney, Australia
Duration: Dec 10 2017Dec 14 2017

Conference

Conference11th Asia-Pacific Conference on Combustion, ASPACC 2017
CountryAustralia
CitySydney
Period12/10/1712/14/17

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Energy Engineering and Power Technology
  • Fuel Technology
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Propagation behaviors of twin premixed methane flame in a counterflow annular slot-burner under DC electric fields'. Together they form a unique fingerprint.

Cite this