Probing the role of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) -coated multiwalled carbon nanotubes in the thermal and mechanical properties of polycarbonate nanocomposites

Jian Zhou, Isaac Aguilar Ventura, Gilles Lubineau

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The role played by multiwalled carbon nanotubes (MWCNTs) coated with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) in the thermal and mechanical properties of polycarbonate (PC) nanocomposites was analyzed. We used differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) to demonstrate that the glass transition temperature of polycarbonate nanocomposites decreased whereas the storage modulus of the samples increased by including PEDOT/PSS-coated MWCNTs. These results indicated that PEDOT/PSS acts as an antiplasticizer. We attributed the enhancement of the storage modulus to the strong hydrogen bonding between PSS and the PC matrix and the reduction of the free volume in the PC matrix due to the shrinkage of PEDOT/PSS upon heating. We also investigated changes in the thermal conductivity and thermal degradation behavior of the nanocomposites. The results indicated that PEDOT/PSS did not play a significant role in improving the thermal conductivity and thermal stability of PC nanocomposites. The relative improvements in the conductivity and thermal stability of the samples that contained PEDOT/PSS were attributed to the better dispersion of the MWCNTs in the PC matrix. © 2014 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)3539-3549
Number of pages11
JournalIndustrial & Engineering Chemistry Research
Volume53
Issue number9
DOIs
StatePublished - Feb 21 2014

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Chemistry(all)
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Probing the role of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) -coated multiwalled carbon nanotubes in the thermal and mechanical properties of polycarbonate nanocomposites'. Together they form a unique fingerprint.

Cite this