PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

Hsin-Wei Liao, Jung-Mao Hsu, Weiya Xia, Hung-Ling Wang, Ying-Nai Wang, Wei-Chao Chang, Stefan T. Arold, Chao-Kai Chou, Pei-Hsiang Tsou, Hirohito Yamaguchi, Yueh-Fu Fang, Hong-Jen Lee, Heng-Huan Lee, Shyh-Kuan Tai, Mhu-Hwa Yang, Maria P. Morelli, Malabika Sen, John E. Ladbury, Chung-Hsuan Chen, Jennifer R. GrandisScott Kopetz, Mien-Chie Hung

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.
Original languageEnglish (US)
Pages (from-to)4529-4543
Number of pages15
JournalJournal of Clinical Investigation
Volume125
Issue number12
DOIs
StatePublished - Nov 16 2015

Fingerprint

Dive into the research topics of 'PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response'. Together they form a unique fingerprint.

Cite this