Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

Matteo Icardi, Gianluca Boccardo, Daniele L. Marchisio, Tiziana Tosco, Rajandrea Sethi

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed. © 2014 American Physical Society.
Original languageEnglish (US)
JournalPhysical Review E
Volume90
Issue number1
DOIs
StatePublished - Jul 31 2014

Fingerprint

Dive into the research topics of 'Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media'. Together they form a unique fingerprint.

Cite this