Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance

I-Kang Ding, Nicolas Tétreault, Jérémie Brillet, Brian E. Hardin, Eva H. Smith, Samuel J. Rosenthal, Frédéric Sauvage, Michael Grätzel, Michael D. McGehee

Research output: Contribution to journalArticlepeer-review

227 Scopus citations

Abstract

In this paper, the pore filling of spiro-OMeTAD (2,2′,7,7′- tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobtfIuorene) in mesoporous TiO2 films is quantified for the first time using XPS depth profiling and UV-Vis absorption spectroscopy. It is shown that spiro-OMeTAD can penetrate the entire depth of the film, and its concentration is constant throughout the film. We determine that in a 2.5-μm-thick film, the volume of the pores is 60-65% filled. The pores become less filled when thicker films are used. Such filling fraction is much higher than the solution concentration because the excess solution on top of the film can act as a reservoir during the spin coating process. Lastly, we demonstrate that by using a lower spin coating speed and higher spiro-OMeTAD solution concentration, we can increase the filling fraction and consequently the efficiency of the device. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.
Original languageEnglish (US)
Pages (from-to)2431-2436
Number of pages6
JournalAdvanced Functional Materials
Volume19
Issue number15
DOIs
StatePublished - Aug 10 2009
Externally publishedYes

Fingerprint

Dive into the research topics of 'Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance'. Together they form a unique fingerprint.

Cite this