Polynomial optics: A construction kit for efficient ray-tracing of lens systems

Matthias B. Hullin, Johannes Hanika, Wolfgang Heidrich

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Simulation of light transport through lens systems plays an important role in graphics. While basic imaging properties can be conveniently derived from linear models (like ABCD matrices), these approximations fail to describe nonlinear effects and aberrations that arise in real optics. Such effects can be computed by proper ray tracing, for which, however, finding suitable sampling and filtering strategies is often not a trivial task. Inspired by aberration theory, which describes the deviation from the linear ray transfer in terms of wavefront distortions, we propose a ray-space formulation for nonlinear effects. In particular, we approximate the analytical solution to the ray tracing problem by means of a Taylor expansion in the ray parameters. This representation enables a construction-kit approach to complex optical systems in the spirit of matrix optics. It is also very simple to evaluate, which allows for efficient execution on CPU and GPU alike, including the computation of mixed derivatives of any order. We evaluate fidelity and performance of our polynomial model, and show applications in high-quality offline rendering and at interactive frame rates.

Original languageEnglish (US)
Pages (from-to)1375-1383
Number of pages9
JournalComputer Graphics Forum
Volume31
Issue number4
DOIs
StatePublished - Jan 1 2012

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Polynomial optics: A construction kit for efficient ray-tracing of lens systems'. Together they form a unique fingerprint.

Cite this