Phase transitions and electrical characterizations of (K 0.5Na 0.5) 2x(Sr 0.6Ba 0.4) 5-xNb 10O 30 (KNSBN) ceramics with 'unfilled' and 'filled' tetragonal tungsten-bronze (TTB) crystal structure

Yingbang Yao, C. L. Mak, Bernd Ploss

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Alkali-doped strontium barium niobate (K 0.5Na 0.5) 2x(Sr 0.6Ba 0.4) 5-xNb 10O 30 (KNSBN) ceramics has been prepared by a conventional solid-state reaction method. The alkali-dopant concentration x has been varied from 0.24 to 1.15 so that the crystal structure was transformed from 'unfilled' to 'filled' tetragonal tungsten-bronze (TTB) structure. Apart from the change in the structural properties, the effects of the alkali-dopants on the phase transition as well as ferroelectric, piezoelectric and pyroelectric properties have also been investigated. Phase transitions have been studied in the temperature range of -200°C to 350°C. The origins of these phase transitions are discussed. The addition of the alkali-dopants enhances the ferroelectric, piezoelectric and pyroelectric properties of the KNSBN ceramics. Alkali-doping also favors abnormal grain growth and thus results in a porous microstructure, which might contribute to the enhancement of the pyroelectric performance. © 2012 Elsevier Ltd.
Original languageEnglish (US)
Pages (from-to)4353-4361
Number of pages9
JournalJournal of the European Ceramic Society
Volume32
Issue number16
DOIs
StatePublished - Dec 2012

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

ASJC Scopus subject areas

  • Materials Chemistry
  • Ceramics and Composites

Fingerprint Dive into the research topics of 'Phase transitions and electrical characterizations of (K 0.5Na 0.5) 2x(Sr 0.6Ba 0.4) 5-xNb 10O 30 (KNSBN) ceramics with 'unfilled' and 'filled' tetragonal tungsten-bronze (TTB) crystal structure'. Together they form a unique fingerprint.

Cite this