Optimal linear precoding for indoor visible light communication system

Houssem Sifaou, Kihong Park, Abla Kammoun, Mohamed-Slim Alouini

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

Visible light communication (VLC) is an emerging technique that uses light-emitting diodes (LED) to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs while offering high data rate performance. In this paper, we focus on the design of the downlink of a multi-user VLC system. Inherent to multi-user systems is the interference caused by the broadcast nature of the medium. Linear precoding based schemes are among the most popular solutions that have recently been proposed to mitigate inter-user interference. This paper focuses on the design of the optimal linear precoding scheme that solves the max-min signal-to-interference-plus-noise ratio (SINR) problem. The performance of the proposed precoding scheme is studied under different working conditions and compared with the classical zero-forcing precoding. Simulations have been provided to illustrate the high gain of the proposed scheme.
Original languageEnglish (US)
Title of host publication2017 IEEE International Conference on Communications (ICC)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISBN (Print)9781467389990
DOIs
StatePublished - Jul 31 2017

Fingerprint

Dive into the research topics of 'Optimal linear precoding for indoor visible light communication system'. Together they form a unique fingerprint.

Cite this