Optimal Full Waveform Inversion Strategy in Azimuthally Rotated Elastic Orthorhombic Media

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The elastic orthorhombic assumption is one of the most practical Earth models that takes into account the horizontal anisotropic layering and vertical fracture network. In this model, the rotation angle of the vertical planes of symmetry is a crucial parameter needed to increase the convergence of an anisotropic full waveform inversion (FWI) as well as to provide the fracture geometry along azimuthal direction. As an initial step, we investigate the possibility of recovering the azimuth angle via FWI, which may offer high-resolution information. We first utilize our new parameterization with deviation parameters, which provides the opportunity for multi-stage FWI. Based on the radiation patterns and gradient directions of each parameter, we show that the azimuth angle mainly affects the parameters that have azimuth-dependent radiation patterns, so that we can hierarchically build up the subsurface model from isotropic to VTI to azimuthally rotated orthorhombic models with less trade-offs. From the numerical example for a synthetic 3D model, we expect that both a deviation parameter and the azimuth angle can be recovered in the last stage of FWI with minimum trade-offs.
Original languageEnglish (US)
Title of host publication79th EAGE Conference and Exhibition 2017
PublisherEAGE Publications
ISBN (Print)9789462822177
DOIs
StatePublished - May 26 2017

Fingerprint

Dive into the research topics of 'Optimal Full Waveform Inversion Strategy in Azimuthally Rotated Elastic Orthorhombic Media'. Together they form a unique fingerprint.

Cite this