On the Throughput of Large-but-Finite MIMO Networks using Schedulers

Behrooz Makki, Tommy Svensson, Mohamed-Slim Alouini

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

This paper studies the sum throughput of the multiuser multiple-input-single-output (MISO) networks in the cases with large but finite number of transmit antennas and users. Considering continuous and bursty communication scenarios with different users’ data request probabilities, we derive quasi-closedform expressions for the maximum achievable throughput of the networks using optimal schedulers. The results are obtained in various cases with different levels of interference cancellation. Also, we develop an efficient scheduling scheme using genetic algorithms (GAs), and evaluate the effect of different parameters, such as channel/precoding models, number of antennas/users, scheduling costs and power amplifiers’ efficiency, on the system performance. Finally, we use the recent results on the achievable rates of finite block-length codes to analyze the system performance in the cases with short packets. As demonstrated, the proposed GA-based scheduler reaches (almost) the same throughput as in the exhaustive search-based optimal scheduler, with substantially less implementation complexity. Moreover, the power amplifiers’ inefficiency and the scheduling delay affect the performance of the scheduling-based systems significantly.
Original languageEnglish (US)
Pages (from-to)152-166
Number of pages15
JournalIEEE Transactions on Wireless Communications
Volume18
Issue number1
DOIs
StatePublished - Nov 6 2018

Fingerprint

Dive into the research topics of 'On the Throughput of Large-but-Finite MIMO Networks using Schedulers'. Together they form a unique fingerprint.

Cite this