On the performance of hybrid RF and RF/FSO fixed gain dual-hop transmission systems

Imran Shafique Ansari, Mohamed-Slim Alouini, Ferkan Yilmaz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

46 Scopus citations

Abstract

In this work, we present the performance analysis of a dual-branch transmission system composed of a direct radio frequency (RF) link and a dual-hop relay composed of asymmetric RF and free-space optical (FSO) links and compare it without having a direct RF path to see the effects of diversity on our system. The FSO link accounts for pointing errors and both types of detection techniques (i.e. indirect modulation/direct detection (IM/DD) as well as heterodyne detection). The performance is evaluated under the assumption of selection combining diversity scheme. RF links are modeled by Rayleigh fading distribution whereas the FSO link is modeled by a unified Gamma-Gamma fading distribution. Specifically, we derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio of these systems in terms of the Meijer's G function. We then capitalize on these results to offer new exact closed-form expressions for the outage probability, higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and ergodic capacity, all in terms of Meijer's G functions. All our new analytical results are also verified via computer-based Monte-Carlo simulations. © 2013 IEEE.
Original languageEnglish (US)
Title of host publication2013 Saudi International Electronics, Communications and Photonics Conference
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISBN (Print)9781467361958
DOIs
StatePublished - Apr 2013

Fingerprint

Dive into the research topics of 'On the performance of hybrid RF and RF/FSO fixed gain dual-hop transmission systems'. Together they form a unique fingerprint.

Cite this