On-Chip Hyperuniform Lasers for Controllable Transitions in Disordered Systems

Ronghui Lin, Valerio Mazzone, Nasir Alfaraj, Jianping Liu, Xiaohang Li, Andrea Fratalocchi

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Designing light sources with controllable properties at the nanoscale is amain goal in research in photonics. Harnessing disorder opens manyopportunities for reducing the footprints of laser devices, enabling physicalphenomena and functionalities that are not observed in traditional structures.Controlling coherent light–matter interactions in systems based onrandomness, however, is challenging especially if compared to traditionallasers. Here, how to overcome these issues by using semiconductor laserscreated from stealthy hyperuniform structures is shown. An on-chip InGaNhyperuniform laser is designed and experimentally demonstrated, a new typeof disordered laser with controllable transitions—ranging from lasing curveslopes, thresholds, and linewidths— from the nonlinear interplay betweenrandomness and hidden order created via hyperuniformity. Theory andexperiments show that the addition of degrees of order stabilizes the lasingdynamics via mode competition effects, arising between weak lightlocalizations of the hyperuniform structure. The properties of the laser areindependent from the cavity size or the gain material, and show very littlestatistical fluctuations between different random samples possessing thesame randomness. These results open to on-chip lasers that combine theadvantages of classical and random lasers into a single platform.
Original languageEnglish (US)
Pages (from-to)1800296
JournalLaser & Photonics Reviews
DOIs
StatePublished - Jan 15 2020

Fingerprint Dive into the research topics of 'On-Chip Hyperuniform Lasers for Controllable Transitions in Disordered Systems'. Together they form a unique fingerprint.

Cite this