Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

Jongsup Hong, Patrick Kirchen, Ahmed F. Ghoniem

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.
Original languageEnglish (US)
Pages (from-to)71-85
Number of pages15
JournalJournal of Membrane Science
Volume407-408
DOIs
StatePublished - Jul 2012
Externally publishedYes

Fingerprint Dive into the research topics of 'Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion'. Together they form a unique fingerprint.

Cite this