Non-Lorentzian depolarized Raman line shapes in n-pentanol

Enzo Di Fabrizio, M. Nardone, A. Nucara, P. Gallo, G. Ruocco*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

High resolution depolarized Raman spectra of n-pentanol in the - 30 to 60° C temperature range are reported. The spectra appear as a continuously decreasing line shape centered at zero frequency. A quantitative analysis of this line shape shows a high frequency exponential tail, which can safely be assigned to intermolecular collision phenomena, and a low frequency narrow contribution. The line shapes of the low frequency contribution are seen to deviate from a single Lorentzian, the effect being more pronounced as the temperature is increased. The data have been analyzed assuming the non-Lorentzian line shape as due either to a distribution of Debye relaxation times or to a single non-Debye relaxation mechanism. The analysis in terms of a distribution of relaxation times suggests a broadening of the distribution as the temperature increases, while the "average" relaxation time shows an Ahrenius behavior which compares well with the one observed in the ultrasonic attenuation measurements. Similar results have been obtained considering the nonexponential relaxation mechanisms. Absolute intensities are also evaluated with respect to the Brillouin doublet and discussed in terms of the possible microscopic scattering mechanisms.

Original languageEnglish (US)
Pages (from-to)6136-6143
Number of pages8
JournalThe Journal of Chemical Physics
Volume97
Issue number9
DOIs
StatePublished - Jan 1 1992

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Non-Lorentzian depolarized Raman line shapes in n-pentanol'. Together they form a unique fingerprint.

Cite this