Noise-robust semi-supervised learning by large-scale sparse coding

Zhiwu Lu, Xin Gao, Liwei Wang, Ji Rong Wen, Songfang Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

This paper presents a large-scale sparse coding algorithm to deal with the challenging problem of noiserobust semi-supervised learning over very large data with only few noisy initial labels. By giving an L1-norm formulation of Laplacian regularization directly based upon the manifold structure of the data, we transform noise-robust semi-supervised learning into a generalized sparse coding problem so that noise reduction can be imposed upon the noisy initial labels. Furthermore, to keep the scalability of noise-robust semi-supervised learning over very large data, we make use of both nonlinear approximation and dimension reduction techniques to solve this generalized sparse coding problem in linear time and space complexity. Finally, we evaluate the proposed algorithm in the challenging task of large-scale semi-supervised image classification with only few noisy initial labels. The experimental results on several benchmark image datasets show the promising performance of the proposed algorithm.

Original languageEnglish (US)
Title of host publicationProceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PublisherAI Access Foundation
Pages2828-2834
Number of pages7
ISBN (Electronic)9781577357025
StatePublished - Jun 1 2015
Event29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 - Austin, United States
Duration: Jan 25 2015Jan 30 2015

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume4

Other

Other29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
CountryUnited States
CityAustin
Period01/25/1501/30/15

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Noise-robust semi-supervised learning by large-scale sparse coding'. Together they form a unique fingerprint.

Cite this