Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space

Norbert Geng, Anders Sullivan, Lawrence Carin

Research output: Contribution to journalArticlepeer-review

135 Scopus citations

Abstract

An extension of the multilevel fast multipole algorithm (MLFMA), originally developed for targets in free space, is presented for the electromagnetic scattering from arbitrarily shaped three-dimensional (3-D), electrically large, perfectly conducting targets above or embedded within a lossy half space. We have developed and implemented electric-field, magnetic-field, and combined-field integral equations for this purpose. The nearby terms in the MLFMA framework are evaluated by using the rigorous half-space dyadic Green's function, computed via the method of complex images. Non-nearby (far) MLFMA interactions, handled efficiently within the multilevel clustering construct, employ an approximate dyadic Green's function. This is expressed in terms of a direct-radiation term plus a single real image (representing the asymptotic far-field Green's function), with the image amplitude characterized by the polarization-dependent Fresnel reflection coefficient. Examples are presented to validate the code through comparison with a rigorous method-of-moments (MoM) solution. Finally, results are presented for scattering from a model unexploded ordnance (UXO) embedded in soil and for a realistic 3-D vehicle over soil.
Original languageEnglish (US)
Pages (from-to)1561-1573
Number of pages13
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume38
Issue number4 I
DOIs
StatePublished - Jul 1 2000
Externally publishedYes

Fingerprint

Dive into the research topics of 'Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space'. Together they form a unique fingerprint.

Cite this